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ABSTRACT 
 

Massive MIMO communication systems have recently tracted a lot of attention. The 

ability to increase both spectral efficiency (SE) and energy efficiency (EE) makes it one 

of the key technologies for the 5G cellular networks. In this work, we investigate 

downlink power control in massive MIMO. Due to the spatial separation between 

antenna arrays, power control in massive MIMO is a challenging problem. Power 

allocation in massive MIMO is a pivotal technique to achieve a uniform quality of 

service for every user throughout the network. The issue of energy and bandwidth 

problem are among the issues that need to be solved and developed first. It is understood 

that power allocation algorithms have been focused on solving these two problems. The 

comparison of three different power allocation algorithms, which will be among the 

basic power allocation algorithms, are carried out in terms of spectrum efficiency. 

 

In addition, the use of deep learning to perform max-min and max-prod power 

allocation in the downlink of Massive MIMO networks. More precisely, a deep neural 

network is trained to learn the map between the positions of user equipment (UEs) and 

the optimal power allocation policies, and then used to predict the power allocation 

profiles for a new set of UEs’ positions. The use of deep learning significantly improves 

the complexity-performance trade-off of power allocation, compared to traditional 

optimization-oriented methods. Particularly, the proposed approach does not require 

the computation of any statistical average, which would be instead necessary by using 

standard methods, and is able to guarantee near-optimal performance. 

 

Keywords: Massive MIMO, Spectral efficiency, Energy efficiency, Power control, 

Power allocation, Neural network. 
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Chapter 1: Massive MIMO 
1.1 MIMO 

MIMO stands for ‘Multiple Input, Multiple Output’, and is a form of radio 

antenna that increases efficiency by increasing the number of transmitters and 

receivers. Perhaps more importantly, MIMO antennas can send and receive signals 

over the same channel, without the need to take turns, which increases capacity 

without sacrificing spectrum.  

 

In today’s 4G and 5G networks, base station antennas are typically fitted with 

around 12 antenna ports that broadcast information in every direction at once. Which 

means that current transceivers have to take turns if they want to transmit and receive 

data on the same frequency, or the data has to be moved to another frequency to avoid 

hold-ups, and this causes congestion. 

 

In radio, multiple-input and multiple-output, or MIMO, is a method for 

multiplying the capacity of a radio link using multiple transmission and receiving 

antennas to exploit multipath propagation. MIMO has become an essential element of 

wireless communication standards including IEEE 802.11n (Wi-Fi 4), IEEE 802.11ac 

(Wi-Fi 5), HSPA+ (3G), WiMAX, and Long-Term Evolution (LTE). More recently, 

MIMO has been applied to power-line communication for three-wire installations as 

part of the ITU G.hn standard and of the HomePlug AV2 specification. 

 

At one time, in wireless the term "MIMO" referred to the use of multiple 

antennas at the transmitter and the receiver. In modern usage, "MIMO" specifically 

refers to a practical technique for sending and receiving more than one data signal 

simultaneously over the same radio channel by exploiting multipath propagation. 

Although the "multipath" phenomenon may be interesting, it is the use of orthogonal 

frequency-division multiplexing (OFDM) to encode the channels that is responsible for 

the increase in data capacity. MIMO is fundamentally different from smart antenna 

techniques developed to enhance the performance of a single data signal, such as 

beamforming and diversity. 
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MIMO systems are an indispensable piece of current wireless systems, and 

lately they have been utilized broadly to accomplish high spectral effectiveness and 

energy productivity. Prior to the presentation of MIMO, single-input-single-output 

systems were for the most part utilized, which had exceptionally low throughput and 

couldn't support countless clients with high dependability. To oblige this massive client 

interest, different new MIMO innovation like single-client MIMO (SU-MIMO), multi-

client MIMO (MU-MIMO) and organization MIMO were created. Be that as it may, 

these new innovations are additionally insufficient to oblige the always expanding 

requests. The wireless clients have expanded dramatically over the most recent couple 

of years, and these clients create trillions of information that should be taken care of 

productively with greater dependability.  

 

Figure 1.1 Basic Structure of MIMO 

 

1.2 Massive MIMO 

Massive MIMO is the most dazzling innovation for 5G and past the wireless 

access period. Massive MIMO is the headway of contemporary MIMO systems utilized 

in current wireless organizations, which groups together hundreds and even large 

number of antennas at the base station and serves many clients at the same time. The 

additional antennas that massive MIMO uses will help center energy into a more modest 

area of room to give better spectral proficiency and throughput. 
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Definition 1.1: (Massive MIMO), Massive MIMO is a type of wireless 

communications technology in which base stations are equipped with a very large 

number of antenna elements to improve spectral and energy efficiency. Massive MIMO 

systems typically have tens, hundreds, or even thousands of antennas in a single antenna 

array. 

                   

                               Figure 1.2 Massive MIMO Uplink and Downlink 

 

• It uses SDMA to achieve a multiplexing gain by serving multiple UEs on the 

same time-frequency resources.  

• It has more BS antennas than UEs per cell to achieve efficient interference 

suppression. If the anticipated number of UEs grows in a cell, the BS should be 

upgraded so that the number of antennas increases proportionally. 

• It operates in TDD mode to limit the CSI acquisition overhead, due to the 

multiple antennas, and to not rely on parametariazable channel models. 

 

1.2 Advantages of Massive MIMO 

Massive MIMO fundamentally expands the capabilities of MU-MIMO through 

the inclusion of a higher number of antennas to bring drastic improvements in network 

performance. Hence, it has become one of the technological underpinnings of modern 

wireless cellular networks to include the 4G standard, LTE and LTE Advanced 

technologies, and 5G technologies. Placing a large number of antennas allow a 

particular access point to focus the transmission and reception of electromagnetic 

signals to specific regions or targeted areas, thus improving throughput, capacity, and 
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efficiency. Note that a Massive MIMO system also coordinates the operation of these 

antennas through machine learning and algorithm. 

 

1.2.1 Spectral Efficiency 

 Massive MIMO systems achieve a high spectral efficiency by exploiting a large 

antenna array to originate more multiplexing gain. Consequently, each user equipment 

has an individual down-beam which leads to offering spectral efficiencies ten times 

higher than that in the conventional MIMO technology. 

 

1.2.2 Energy Efficiency 

In massive MIMO systems, the gain of transmitted signals is increased to the 

position of candidate users by pointing the beam of the antenna array into a small region. 

Consequently, the massive MIMO systems radiate less power and are more energy-

efficient systems. Moreover, the transmit power is significantly reduced when the 

number of transmit antennas is increased. By dint of the huge number of antennas in 

massive MIMO systems, a BS can make several beams at the same time and directly 

pointing them to a particular user or more. Then, the resources can be used repeatedly 

in the same specific area. Thus, the throughput could be increased without increasing 

the transmit power by increasing the number of transmit antennas Massive MIMO 

systems have the ability to reduce the transmitted power 1000 times below conventional 

MIMO and to maximize the data rates at the same time. 

 

1.2.3 Reliability 

A large number of antennas in massive MIMO systems advances high diversity 

gain, which increases the link reliability and elasticity against fading.  
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1.2.4 Increases Network Capacity 

Massive MIMO increases the capacity of a particular wireless communication 

network in two ways. First, it enables the deployment of higher frequencies, such as in 

the case of Sub-6 5G specification. Second, by employing multi-user MIMO, a cellular 

base station with Massive MIMO capability can send and receive multiple data streams 

simultaneously from different users using the same frequency resources. 

Note that network capacity is determined by the number or amount of total data 

a particular network can serve to its end-users, as well as by the maximum number of 

end-users that can be served based on an expected service level. 

 

1.2.5 Enhances Network Coverage 

Another advantage of Massive MIMO is that it provides high spectral efficiency 

through the coordination of multiple antennas using simple processing and without 

intensive power consumption. When used in a 5G cellular network technology, it allows 

10 times more spectral and network efficiency compared to fourth-generation networks. 

Furthermore, when applied in 4G technology, it improves the deep coverage of fourth-

generation networks. 

 

Because next-generation cellular network technologies use electromagnetic 

radiation with higher frequencies or more specifically, frequencies within the upper 

limits of radio waves and the range of microwaves, the signals they generate travel a 

short distance. Hence, enhancing network coverage is critical in modern and future 

cellular technologies. 

 

1.2.6 Complements Beamforming 

Beamforming technology works by focusing a signal toward a specific 

direction, rather than broadcasting in all directions, thus resulting in more direct 

communication between a transmitter and a receiver, more stable and reliable 

connectivity, and faster data transmission. As a signal processing technique and traffic-

signalling system, this technology depends on advanced antenna technologies on both 

access points and end-user devices. 
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The large number of antennas in a Massive MIMO system enables three-

dimensional beamforming in which a single beam of signal-bearing electromagnetic 

radiation travels through vertical and horizontal directions. The process increases data 

transmission rates further while reaching people in elevated areas such as buildings and 

those in moving vehicles 

 

1.2.7 Enables Next-Gen Technologies 

Massive MIMO is an essential component of 5G technology. For example, in 

Sub-6 5G specification, it allows the utilization of frequencies within the sub-6 GHz 

range. Moreover, in mmWave 5G specification, this technology increases frequency 

reach to expand network coverage, optimizes the propagation of signal-bearing 

electromagnetic radiation, and allows true multi-user wireless communication within a 

defined area. 

 

1.3 Disadvantages of Massive MIMO 

One of the biggest disadvantages of Massive MIMO is the cost associated with 

its implementation and deployment. The systems are several times more extensive than 

traditional base station units and antenna technologies. Furthermore, the design of 

multiple antenna systems for cellular networks is more complex and requires more 

effort and time during assembly and installation. 

 

Furthermore, using frequency division duplex or FDD results in feedback 

overhead. This phenomenon transpires when a receiver sends out feedback signals to a 

transmitter. Increasing the antenna elements results in a further increase in the 

overhead. Hence, time-division duplex or TDD is more suitable for Massive MIMO 

implementation. 

 

The placement of multiple antennas in a defined area within a base station 

means placing hardware components in a smaller space. An entire massive multiple-

input and multiple-output system needs advanced components that are capable of 
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delivering their intended level of performance despite their smaller size than their larger 

counterparts. Remember that Massive MIMO is not simply about placing and using a 

large number of antennas. The entire technology also works using artificial intelligence 

and machine learning to complement frequency management, signal processing 

techniques, and data transmission. Doing so requires complex processing algorithms 

that further add to the cost and complexity of designing, implementing, and deploying 

an entire system. 

 

1.4 Duplexing 

A duplex communication system is a point-to-point system composed of two or 

more connected parties or devices that can communicate with one another in both 

directions. Duplex systems are employed in many communications networks, either to 

allow for simultaneous communication in both directions between two connected 

parties or to provide a reverse path for the monitoring and remote adjustment of 

equipment in the field. 

It takes two forms:  

1. Half duplex 

2. Full duplex 

 

In half duplex, the two communicating parties take turns transmitting over a shared 

channel. Two-way radios work this way. As one-party talks, the other listens. Speaking 

parties often say “Over” to indicate that they’re finished and it’s time for the other party 

to speak. In networking, a single cable is shared as the two computers communicating 

take turns sending and receiving data. 

 

Full duplex refers to simultaneous two-way communications. The two 

communicating stations can send and receive at the same time. Landline telephones and 

cell phones work this way. Some forms of networking permit simultaneous transmit 

and receive operations to occur. This is the more desirable form of duplexing, but it is 

more complex and expensive than half duplexing. 
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There are two basic forms of full duplexing:  

1. Frequency division duplex (FDD) 

2. Time division duplex (TDD) 

 

1.4.1 Frequency Division Duplexing 

FDD requires two separate communications channels. In networking, there are 

two cables. Full-duplex Ethernet uses two twisted pairs inside the CAT5 cable for 

simultaneous send and receive operations. Wireless systems need two separate 

frequency bands or channels (Fig 1.2). A sufficient amount of guard band separates the 

two bands so the transmitter and receiver don’t interfere with one another. Good 

filtering or duplexers and possibly shielding are a must to ensure the transmitter does 

not desensitize the adjacent receiver. 

         

Figure 1.3 FDD requires two symmetrical segments of spectrum for the 

uplink and downlink channels 

 

In a cell phone with a transmitter and receiver operating simultaneously within 

such close proximity, the receiver must filter out as much of the transmitter signal as 

possible. The greater the spectrum separation, the more effective the filters. 

 

FDD uses lots of frequency spectrum, though, generally at least twice the 

spectrum needed by TDD. In addition, there must be adequate spectrum separation 

between the transmit and receive channels. These so-called guard bands aren’t useable, 

so they’re wasteful. Given the scarcity and expense of spectrum, these are real 

disadvantages. 
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However, FDD is very widely used in cellular telephone systems, such as the 

widely used GSM system. In some systems the 25-MHz band from 869 to 894 MHz is 

used as the downlink (DL) spectrum from the cell site tower to the handset, and the 25-

MHz band from 824 to 849 MHz is used as the uplink (UL) spectrum from the handset 

to cell site. 

 

Another disadvantage with FDD is the difficulty of using special antenna 

techniques like multiple-input multiple-output (MIMO) and beamforming. These 

technologies are a core part of the new Long-Term Evolution (LTE) 4G cell phone 

strategies for increasing data rates. It is difficult to make antenna bandwidths broad 

enough to cover both sets of spectrum. More complex dynamic tuning circuitry is 

required. 

 

1.4.2 Time Division Duplexing (TDD) 

 TDD uses a single frequency band for both transmit and receive. Then it shares 

that band by assigning alternating time slots to transmit and receive operations (Fig 

1.3). The information to be transmitted—whether it’s voice, video, or computer data—

is in serial binary format. Each time slot may be 1 byte long or could be a frame of 

multiple bytes. 

 

Figure 1.4 TDD alternates the transmission and reception of station data over time. 

 

 In some TDD systems, the alternating time slots are of the same duration or 

have equal DL and UL times. However, the system doesn’t have to be 50/50 

symmetrical. The system can be asymmetrical as required. For instance, in Internet 
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access, download times are usually much longer than upload times so more or fewer 

frame time slots are assigned as needed. The real advantage of TDD is that it only needs 

a single channel of frequency spectrum. Furthermore, no spectrum-wasteful guard 

bands or channel separations are needed. The downside is that successful 

implementation of TDD needs a very precise timing and synchronization system at both 

the transmitter and receiver to make sure time slots don’t overlap or otherwise interfere 

with one another. 

 

1.5 Spatial Multiplexing and Spatial Diversity 

Spatial multiplexing and spatial diversity are two radio communication 

techniques used in modern antenna systems in 4G LTE and 5G NR networks. Both 

these techniques play essential but separate roles in the MIMO (Multiple Input Multiple 

Output) antenna systems. 

 

Definition 1.2: (Spatial Diversity). Spatial diversity is a technique in MIMO that 

reduces signal fading by sending multiple copies of the same radio signal through 

multiple antennas. Spatial diversity improves radio signal link quality by employing 

multiple antennas at the transmitter or receiver to communicate numerous copies of the 

same signal. That allows the antennas to overcome the negative impact of multipath 

fading by using the copies of the signal to reconstruct it. 

 

Diversity is not a new concept in mobile communications and has been used for 

years to address the negative impact of signal fading. When a radio signal (e.g., a mobile 

signal) travels from the cellular base station to the receiver of a mobile phone, it can 

take many routes depending on the obstructions in its way. Obstructions can be things 

like buildings, trees, poles, mountains etc. When the signal encounters any obstructions, 

it can get scattered and become weak or “fade” by the time it reaches the receiver. 

Diversity in radio communications is the ability of an antenna system to create 

redundant network resources for the signal to minimise the overall impact of signal 

fading. In plain English, it means creating additional copies of the signal so that bits 

and pieces of the scattered signal can be picked up to reconstruct the signal. At a 
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theoretical level, at least three types of diversity solutions are available, including 

frequency, time, and space diversity. Frequency diversity requires multiple frequency 

channels, each communicating a version or copy of the same signal. Time diversity 

does the same thing but uses different time-slots instead so that different copies of the 

signal are communicated at different time intervals. But the diversity type employed by 

MIMO antenna systems is space diversity, also known as spatial diversity. In MIMO 

systems, spatial diversity is achieved by multiple antennas at the transmitter and the 

receiver that communicate (transmit or receive) a different version of the same signal. 

These versions are essentially a replica of the original signal. If used at the receiver end, 

the receiver can collect all the different versions of the signal to reconstruct it to 

overcome the negative impact of signal fading. In 4G LTE and 5G NR networks, spatial 

diversity is a critical part of MIMO systems that use multiple antennas at the transmitter 

and the receiver. 

 

Definition 1.3 (Spatial Multiplexing). spatial multiplexing is a technique in MIMO that 

boosts data rates by sending the data payload in separate streams through spatially 

separated antennas. Spatial multiplexing improves data rates by allowing the overall 

data payload to be communicated to a user device in the form of multiple data streams 

that carry small portions of the overall information. The data streams can be targeted at 

a single user device or multiple user devices. 

 

Spatial multiplexing or Space Division Multiplexing (SDM) is a multiplexing 

technique employed by MIMO antenna systems. It is an essential feature of MIMO and 

is the primary reason for introducing MIMO in 4G LTE and 5G NR networks. In spatial 

multiplexing, a transmitter or receiver can use several antennas separated in space by 

their angular direction. These antennas can send and receive multiple data streams using 

the same frequency and time resources and act as individual channels to communicate 

the information (e.g. a WhatsApp message) between the transmitter and receiver. The 

multiple data streams within a MIMO system can target a single user device or multiple 

user devices for simultaneous communication. When the data payload is sent towards 

a user device in the form of multiple concurrent streams, the data rate for the user device 
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goes up. 5G NR networks use an enhanced version of MIMO, called Massive MIMO 

which consists of tens or even hundreds of antenna elements within a single antenna 

panel. Due to the sheer volume of antenna elements and the multi-user support 

capability, Massive MIMO can simultaneously offer higher data rates to several user 

devices. 

 

MIMO systems in 4G LTE and 5G NR networks use both spatial multiplexing 

and spatial diversity to improve data rates whilst improving signal quality. In MIMO, 

spatial diversity is a technique that provides the ability to overcome the negative impact 

of multipath signal fading by communicating separate versions or copies of the same 

signal through multiple antennas. On the other hand, spatial multiplexing is a technique 

that improves the achievable data rates for end-users by transmitting and receiving 

multiple streams of data through various spatially-separated antennas. 

 

1.6 Importance of channel in wireless communication 

   Communicating data or an information signal from transmitter or receiver to 

receiver or transmitter requires some form of path way or medium called CHANNEL. 

Channel plays and important role in wireless communication since it can degrade the 

information signal by adding multipath fading and Doppler effects (if channel is 

mobile). Correct knowledge of channel is a fundamental perquisite for the design of a 

wireless communication system. A communication channel either to a physical 

transmission medium such as wire, or through a local connection over a multiplexed 

medium such as a radio channel. 

 

A channel is used to convey an information signal from one of several senders 

to one of several receivers. A channel has a certain capacity E, for transmitting 

information often measure by its bandwidth in Hz or its data rate in bits per second.  

Bandwidth is a limited resource used by different organization due to which widespread 

use of wireless networks are limited. The wireless channel is susceptible to a variety of 

transmission impediments, path loss, interference and blockage These factors restrict 

the range and he reliability of the wireless transmission the extent to which these factors 
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affect the transmission depends upon the environmental conditions and the mobility of 

the transmitter and the receiver. 

 

1.6.1 Additive white Gaussian Noise 

 

 

Figure 1.5 Additive white gaussian noise 

 

The performance of a digital communication system is quantified by the probability of 

bit detection errors in the presence of thermal noise. In the context of wireless 

communications. the main source of thermal noise is addition of random signals arising 

from the vibration of atoms in the receiver electronics. 

The term additive white Gaussian noise (AWGN) originates due to the following 

reasons Additive: The noise is additive, Le., the received signal is equal to the 

transmitted signal plus noise. This gives the most widely used equality in 

communication systems.  

r(t)=s(t)+w(t)(1)(1) r(t)=s(t)+w(t)                                         (1) 

 

which is shown in Figure below. Moreover, this noise is statistically independent of the 

signal Remember that the above equation is highly simplified due to neglecting every 

single imperfection a Tx signal encounters, except the noise itself. 
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Figure 1.6 Additive Noise 

 

White: Just like the white colour which is composed of all frequencies in the visible 

spectrum, white noise refers to the idea that it has uniform power across the whole 

frequency band. As a consequence, the Power Spectral Density (PSD) of white noise is 

constant for all frequencies ranging from to -∞ to +∞. 

 

Gaussian: The probability distribution of the noise samples is Gaussian with a zero 

mean, e, in time domain, the samples can acquire both positive and negative values and 

in addition, the values close to zero have a higher chance of occurrence while the values 

far away from zero are less likely to appear. This is shown in Figure below. As a result, 

the time domain average of large number of noise samples is equal to zero. 

 

            Figure 1.7 Gaussian Noise 

 

             In reality, the ideal flat spectrum from −∞ to +∞ is true for frequencies of 

interest in wireless communications (a few kHz to hundreds of GHz) but not for higher 

frequencies. Nevertheless, every wireless communication system involves filtering that 

removes most of the noise energy outside the spectral band occupied by our desired 

signal. Consequently, after filtering, it is not possible to distinguish whether the 

spectrum was ideally flat or partially flat outside the band of interest. To help in 
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mathematical analysis of the underlying waveforms resulting in closed-form 

expressions — a holy grail of communication theory — it can be assumed to be flat 

before filtering. For a discrete signal with sampling rate FS, the sampling theorem 

dictates that the bandwidth of a signal is constrained by a lowpass filter within the range 

±FS/2 to avoid aliasing. For the purpose of calculations, this filter is an ideal lowpass 

filter with   

𝐻(𝐹) = {
          1, −

FS

2
< F < +

FS

2

0,  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                                                                          (2) 

The resulting in-band power is shown in red in the figure below, while the rest is filtered 

out. 

 

Figure 1.8 Additive white gaussian noise 

 

1.6.2 Rayleigh Channel 

 Rayleigh fading is a statistical model for the effect of a propagation environment 

on a radio signal, such as that used by wireless devices. Rayleigh fading models assume 

that the magnitude of a signal that has passed through such a transmission medium (also 

called a communication channel) will vary randomly, or fade, according to a Rayleigh 

distribution, the radial component of the sum of two uncorrelated Gaussian random 

variables. 

 

Rayleigh fading is viewed as a reasonable model for tropospheric and 

ionospheric signal propagation as well as the effect of heavily built-up urban 

environments on radio signals. Rayleigh fading is most applicable when there is no 
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dominant propagation along a line of sight between the transmitter and receiver. If there 

is a dominant line of sight, Rician fading may be more applicable Rayleigh fading is a 

special case of two-wave with diffuse power (TWDP) fading 

 

Rayleigh fading is a reasonable model when there are many objects in the 

environment that scatter the radio signal before it arrives at the receiver. The central 

limit theorem holds that, if there is sufficiently much scatter, the channel impulse 

response will be well-modelled as a Gaussian process irrespective of the distribution of 

the individual components. If there is no dominant component to the scatter, then such 

a process will have zero mean and phase evenly distributed between 0 and 2n radians. 

The envelope of the channel response will therefore be Rayleigh distributed Calling 

this random variable, it will have a probability density function: 

    (3) 

Where Ω = E(R2). 

Often, the gain and phase elements of a channel's distortion are conveniently 

represented as a complex number. In this case, Rayleigh fading is exhibited by the 

assumption that the real and imaginary parts of the response are modelled by 

independent and identically distributed zero-mean Gaussian processes so that the 

amplitude of the response is the sum of two such processes. 

 

Rayleigh channel model: The Rayleigh fading environment is described by the many 

multipath components, each having relatively similar signal magnitude, and uniformly 

distributed phase, that means there is no line of sight (LoS) path between transmitter 

and receiver. The channel in which the signal takes various path to reach the receiver 

after getting reflect from various objects in the environment. The signal receiving at 

receiver is sum of the reflected signal and the main signal. The signal in the environment 

gets diffracted or reflected from the objects like tree, building, moving vehicle etc and 

imposes problem when the envelope of the individual signal is added up. 
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CHAPTER 2: SYSTEM MODEL 

2.1 Introduction: 

Channel estimation is crucial for massive multiple-input multiple-output 

(MIMO) systems to scale up multi-user (MU) MIMO, providing great improvement in 

spectral and energy efficiency. The expected massive MIMO improvements assume 

that accurate channel estimations are available at both the receiver and transmitter for 

detection and precoding, respectively. Additionally, the reuse of frequencies and pilot 

reference sequences in cellular communication systems causes interferences in channel 

estimation, degrading its performance. Since both the time-frequency resources 

allocated for pilot transmission and the channel coherence time are limited, the number 

of possible orthogonal pilot sequences is also limited, and as a consequence, the pilot 

sequences have to be reused in neighbour cells of cellular systems. Therefore, channel 

estimates obtained in a given cell get contaminated by the pilots transmitted by the users 

in other cells. This coherent interference is known in the literature as pilot 

contamination, i.e., the channel estimate at the base station in one cell becomes 

contaminated by the pilots of the users from other cells. The contamination not only 

reduces the quality of the channel estimates, i.e., increases the MSE, but also makes the 

channel estimates statistically dependent, even though the true channels are statistically 

independent. Moreover, pilot contamination does not disappear with the addition of 

more antennas. 

Massive MIMO systems operating in TDD assume channel reciprocity between 

uplink and downlink in order to minimize pilot overhead, transmitting pilot reference 

signals only in the uplink. In this scenario, pilot over head cost is proportional to the 

number of terminals and improved estimation quality can be achieved due to the large 

number of antennas. Base stations estimate channels usually based on least squares (LS)  

or minimum mean square error (MMSE)  methods. Besides, inter and intra-cell large-

scale fading coefficients are assumed to be perfectly known when applying the MMSE 

method in the great majority of works. 
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 In a real-world network deployment, although changing slowly, the large-scale 

fading coefficients must be estimated and updated from time to time. Additionally, the 

estimation error of the large-scale fading coefficients impacts significantly on the 

performance of uplink data decoding and downlink transmission (e.g., precoding and 

beamforming). Approaches on how to estimate the large-scale fading coefficients are 

presented in the following pieces of work. 

The most commonly used analytical massive MIMO channel is the spatially. 

frequency non-selective (flat) fading channel model. Flat fading channels are also 

known as amplitude varying channels and narrowband channels as the signal’s 

bandwidth is narrow compared to channel’s bandwidth. In this narrowband channel 

model, the channel gain between any pair of transmit-receive antennas is determined as 

a complex Gaussian random variable. This model relies on two assumptions: (i) the 

antenna elements in the transmitter and receiver being spatially well separated once the 

more widely spaced (in wavelengths) the antenna elements, the smaller the spatial 

channel correlation, and (ii) the presence of a large number of temporally but narrowly 

separated multipaths (common in a rich-scattering environment), whose combined 

gain, by the central-limit theorem, can be approximated by a Gaussian random variable. 

Flat fading channels present a channel response that exhibits flat gain and linear 

phase over a bandwidth (coherence bandwidth) that is greater than the signal’s 

bandwidth. Therefore, all frequency components of the signal will experience the same 

magnitude of fading, resulting in a scalar channel response. The gain applied to the 

signal varies over time according to a fading distribution. In this work, we consider that 

the gain applied to the signal passing through this channel will vary randomly, 

according to a Rayleigh distribution. We additionally assume that the antenna spacing 

is sufficiently large so that the antennas are uncorrelated. 

The channel estimation and pilot contamination problems associated with 

uplink training in flat Rayleigh fading channels and understand its impact on the 

operation of multi-cell MU massive MIMO TDD cellular systems. We propose and 

evaluate an efficient and practical channel estimator that does not require previous 
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knowledge of inter/intra-cell large-scale fading coefficients (i.e., interference) and 

noise power. Differently from, we employ the maximum likelihood (ML) method to 

find an estimator for the interference plus noise power term in the MMSE channel 

estimator. We show that this estimator is not only unbiased but also achieves the 

Crámer-Rao lower bound. We replace this estimator back into the MMSE estimator and 

prove that the performance of the new channel estimator asymptotically approaches 

that of the MMSE estimator. 

2.2 Multi cell Massive MIMO system: 

                        

Figure 2.1 An illustration of the multi-cell DAA massive MIMO system. 

  we consider a multi-cell multi-user massive MIMO network, as illustrated in 

Fig(2.1) The network consists of L cells with K single-antenna users in each cell1. 

Notably, each cell has N DAAs deployed at arbitrary locations, where each sub-array 

is equipped with M antenna elements. As such, there are Mtot = M × N antenna elements 

in each cell. 

Each sub-array in a cell is connected to a CPU through backhaul links2. We 

highlight that no coordination is required between different cells in the system and CPU 

in each cell only requires local information via a backhaul links that can be 

implemented using cloud-RAN techniques. Furthermore, we assume that there is 

perfect synchronization in the system. We denote the BS in the j-th cell by BSj , where 
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j ∈ {1, ··· , L}. The n-th antenna sub-array in the j-th cell is represented by BSj
n  where 

n ∈ {1, ··· , N}. Furthermore, we represent the k-th user in the j-th cell by Ujk, where k 

∈ {1, ··· , K}. We represent the uplink channel between Ujk and BSl
n by hjk

ln, where l ∈ 

{1,··· , L}. Additionally, we assume that the channels follow a correlated Rayleigh 

fading distribution, i.e., hjk
ln∼ CƝ (0, Rjk

ln), where Rjk
ln is the channel covariance 

matrix, which encapsulates various channel impairments such as average path-loss and 

spatial correlation. We clarify that the path loss between a user and all antenna elements 

of a DAA is considered constant. However, due to the physical separation between 

various DAAs the path losses between a users and different DAAs in a cell are not 

constant. As such, the existing power control algorithm cannot be applied to the system 

model considered in our work. 

The system model considered is a generalized model as compared to  since it is 

capable of describing various antenna array deployments. For example, we note that 

the cell free massive MIMO is a special case of our considered system model when L 

= 1, M = 1, and N = Mtot. Moreover, co-located massive MIMO is another special case 

of our considered system model when M = Mtot and N = 1. 

  We assume the network operates in the time division duplex (TDD) mode. 

Accordingly, the uplink and downlink channels are assumed to be the same and 

reciprocal within one channel coherence interval . Consequently, the BS utilizes the 

uplink channel estimates for downlink precoding based on the assumption of channel 

reciprocity. In the beginning of each channel coherence interval, the users in each cell 

transmit their pilot sequences to the same-cell BS, which then performs channel 

estimation. The channel estimation is followed by the downlink data transmission 

where each BS sends data to the same-cell users. 

 

 

 

 



21 

2.2.1 Uplink Channel Estimation Under Perfect Channel Knowledge 

At the beginning of each channel coherence interval, all users send their pre-

assigned pilot sequences to the same cell BS for the purpose of channel estimation. We 

denote the pilot sequence assigned to Ujk by ɸjk, where ||ɸjk|| , j ∈ {1, ··· , L}, and k ∈ 

{1, ··· , K}. We assume that each pilot sequence is of length τp. We highlight that we 

need to estimate the channels between a user and all the same-cell DAAs in the system. 

Differently, in co-located massive MIMO, the channel estimation is typically 

performed between a user and a single same-cell BS. Furthermore, we assume that each 

user within the same cell is assigned an orthogonal pilot sequence, i.e., τp = K. The same 

set of pilot sequences are reused in each cell across the entire network. Consequently, 

the uplink pilot transmission received at the nth sub-array of BSj , i.e., BSj
n , is given as        

                                                                                                                                       

where Nj
n ∈ CM×τ represents the additive white Gaussian noise (AWGN) at BSj

n , and 

ρtr is the normalized pilot power per user. Afterwards, the sub-array BSj
n correlates (1) 

with the known pilot sequence to obtain 

                                          

We denote the correlation between pilot sequences assigned to Uli  and Ujk as ρjk
li = Φli

H 

Φjk. Based on this definition, we re-express (2) as 

                                       

From (3), we obtain the MMSE uplink channel estimate, i.e., hjk
jn of the channel hjk

jn as  
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where         

                                                    

and         

                                            

Under the assumption of full statistical channel knowledge, the covariance 

matrices Rjk
jn are known to the BSs. As such, BSj

n can obtain the matrix Qjk
n by using 

(7). Afterwards, utilizing (5) together with (3), BSj
n obtain the channel uplink channel 

estimates using (4). We highlight that the assumption of perfect channel covariance 

knowledge is commonly used in massive MIMO literature. Additionally, the change in 

the channel covariance information occurs at a slow rate. As such, the channel statistics 

remains largely unchanged over several channel coherence intervals. Furthermore, 

several methods exist in literature to estimate 00the change in the channel covariance 

information with small overhead. 

 

2.2.2 Uplink Channel Estimation Under Limited Channel Covariance Knowledge: 

  In this subsection, we discuss a more practical scenario where BSs only have 

limited knowledge of the channel covariance. Specifically, we assume that BSs do not 

have full knowledge of the channel covariance matrix Rjk
jn . Furthermore, BSs only 

have knowledge about the diagonal elements of the channel covariance matrices. Under 

these assumptions, we obtain the element-wise EW-MMSE uplink channel estimate of 

the z-th element of hjk
jn, where z ∈ {1,...,M}, as 
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We highlight that the diagonal elements of the channel covariance matrices are easy to 

estimate and require only a few additional resources. Consequently, the EW-MMSE 

channel estimate for hjk
jn  is obtained as  

                         

We highlight that the diagonal elements of the channel covariance matrices are easy to 

estimate and require only a few additional resources. Consequently, the EW-MMSE 

channel estimate for hjk
jn is obtained as  

                       

We highlight that Djk
jn and Λjk

jn are M ×M diagonal matrices. We define Djk
jn as 

                        

Afterwards, utilizing (10) together with (3), BSj
n obtains the channel uplink channel 

estimates according to (9), under the assumption of imperfect channel knowledge at 

BSs. 
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2.3 Massive MIMO network 

  We consider the DL of a Massive MIMO network with L cells, each comprising 

a BS with M antennas and K UEs. We denote by hli
j ∈ CM the channel between UE i in 

cell l and BS j and assume that 

                                                  hli
j ~ ƝC (0M , Rli

j )          (1)                                             

where Rli
j ∈ CM×M is the spatial correlation matrix, known at the BS. The normalized 

trace βli
j =1/Mtr (Rli

j ) accounts for the average channel gain from an antenna at BS j to 

UE i in cell l and is modelled as (in dB) 

                                     βli
j  = ϒ− 10α log10 (

ⅆ𝑙𝑖

𝑗

1𝑘𝑚
) dB         (2)                                        

where ϒ = −148 dB determines the median channel gain at a reference distance of 1 

km, and α = 3.76 is the pathloss coefficient. Also,  dli
j is the distance of UE i in cell l 

from BS j, given by dli
j  = ||xli

j|| with xli
j ∈ R2 being the UE location in the Euclidean 

space. Note that shadowing should also be considered in (2). However, this is usually  

modelled by a log-normal distribution, resulting into a channel model that is not 

spatially consistent. In other words, two UEs at almost the same location would not 

experience the same channel. To overcome this issue, one should resort to channel 

models based on ray tracing or recorded measurements. 

2.4 Channel Estimation 

Pilot-based channel training is utilized to estimate the channel vectors at BSj. 

We assume that the BS and UEs are perfectly synchronized and operate according to a 

time division duplex (TDD) protocol wherein the DL data transmission phase is 

preceded in the UL by a training phase for channel estimation. There are τp = K pilots 

(i.e., pilot reuse factor of 1) and UE i in each cell uses the same pilot. Using a total UL 

pilot power of ρtr per UE and standard MMSE estimation techniques , BS j obtains the 

estimate of hli
j as 
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           where nli ∼ ƝC (0, IM) is noise, Qli = 𝛴𝑙′
𝐿  Rl'i

j + 1/ρtr IM, and Φjli = Rli
jQli

-1Rli
j.The 

estimation error hli
j = hli

j -hli
j ∼ ƝC (0, Rli

j - Φli
j) is independent of hli

j. 

 

2.5 Spectral Efficiency 

Definition: The SE of an encoding/decoding scheme is the average number of bits of 

information, per complex-valued sample, that it can reliably transmit over the channel 

under consideration. 

From this definition, it is clear that the SE is a deterministic number that can be 

measured in bit per complex-valued sample. Since there are B samples per second, an 

equivalent unit of the SE is bit per second per Hertz, often written in short-form as 

bit/s/Hz. For fading channels, which change over time, the SE can be viewed as the 

average number of bit/s/Hz over the fading realizations, as will be defined below. In 

this monograph, we often consider the SE of a channel between a UE and a BS, which 

for simplicity we refer to as the “SE of the UE”. A related metric is the information rate 

[bit/s], which is defined as the product of the SE and the bandwidth B. In addition, we 

commonly consider the sum SE of the channels from all UEs in a cell to the respective 

BS, which is measured in bit/s/Hz/cell.  

SE of a cell can be increased by using more transmit power, deploying multiple 

BS antennas, or serving multiple UEs per cell. All these approaches inevitably increase 

the PC of the network, either directly (by increasing the transmit power) or indirectly 

(by using more hardware), and therefore may potentially reduce the Energy Efficiency 

(EE). 

In a broad sense, EE refers to how much energy it takes to achieve a certain 

amount of work. This general definition applies to all fields of science, from physics to 

economics, and wireless communication is no exception. Unlike many fields wherein 
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the definition of “work” is straightforward, in a cellular network it is not easy to define 

what exactly one unit of “work” is. The network provides connectivity over a certain 

area and it transports bits to and from UEs. Users pay not only for the delivered number 

of bits but also for the possibility to use the network anywhere at any time. Moreover, 

grading the performance of a cellular network is more challenging than it first appears, 

because the performance can be measured in a variety of different ways and each such 

performance measure affects the EE metric differently Among the different ways to 

define the EE of a cellular network, one of the most popular definitions takes inspiration 

from the definition of SE, that is, “the SE of a wireless communication system is the 

number of bits that can be reliably transmitted per complex-valued sample”. By 

replacing “SE” with “EE” and “complex-valued sample” with “unit of energy”, the 

following definition is obtained. 

2.5.1 Achievable UL Spectral Efficiencies: 

The channel estimates enable each BS to semi-coherently detect the data signals 

from its UEs. In particular, we assume that BS j applies a linear receive combining 

vector gjk ∈ CM to the received signal, as gjk
Hyj , to amplify the signal from its kth UE 

and reject interference from other UEs in the spatial domain. We want to derive the 

ergodic achievable SE for any UE, where codewords span over both the Rayleigh 

fading and random locations of the interfering UEs—specific UE distributions are 

considered. For notational convenience, we assume that β = B/K is an integer that we 

refer to as the pilot reuse factor. The cells in L are divided into β ≥ 1 disjoint subsets 

such that the same K pilot sequences are used within a set, while different pilots are 

used in different sets. We refer to this as non-universal pilot reuse.  The following 

theorem shows how the SE depends on the receive combining, for Gaussian codebooks 

where xjk ∼ C Ɲ (0,1) 

Theorem 1. In the UL, an ergodic  achievable SE of an arbitrary UE k in cell j is 

                               ζ(ul)(1- 
𝐵

𝑠
) E{Z} {log2(1+SINRjk

(ul))}     [bit/s/Hz]                           (1) 

where the effective signal-to-interference-and-noise ratio (SINR), SINRjk
(ul) is given by 
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The expectations E{z}{·} and E{h}{·} are with respect to UE positions and channel 

realizations, respectively. 

2.5.2 Achievable DL Spectral Efficiencies: 

The channel estimates are also used for linear precoding in the DL, where the 

M channel inputs are utilized to make each data signal add up semi-coherently at its 

desired UE and to suppress the interference caused to other UEs. wjk ∈ CM is the 

precoding vector associated with UE k in cell j. We express these precoding vectors as  

                              

where the average transmit power qjk ≥ 0 is a function of the UE positions, but not the 

instantaneous channel realizations. The vector ĝjk ∈ CM defines the spatial directivity 

of the transmission and is based on the acquired CSI; the normalization with the average 

squared norm E{h} {||ĝjk||} gives the analytic tractability that enables the following 

results. 

Theorem 2. In the DL, an ergodic achievable SE of an arbitrary UE k in cell j is 

                                     ζ(dl)(1- 
𝐵

𝑠
)  E{Z} {log2(1+SINRjk

(dl))}     [bit/s/Hz]                    (2) 

with the effective SINR,   SINRjk
(dl), given by 
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2.6 Downlink Spectral Efficiency: 

The BS in cell l transmits the DL signal xl = P Ki=1 wliςli where ςli ∼ ƝC(0, ρli) 

is the DL data signal intended for UE i in cell l, assigned to a precoding vector wli ∈ 

CM that determines the spatial directivity of the transmission and satisfies  ||wli||
2= 1 so 

that ρli represents the transmit power. An achievable DL SE can be computed in 

Massive MIMO by using the following hardening bound . 

Theorem 3. The DL ergodic channel capacity of UE k in cell j is lower bounded by 

                                 SEjK
dl = 

𝜏𝑑

𝜏𝑐
 log2 (1+ γjk

dl)       [bit/s/Hz]                                       (3) 

with 

                  (4)             

where the expectations are computed with respect to the channel realizations. The pre-

log factor 
𝜏𝑑

𝜏𝑐
 accounts for the fraction of samples per coherence block used for DL data. 

Notice that the above lower bound is achieved when the UE treats the mean of 

its precoded channel as the true one. This is a reasonable assumption for channels that 

exhibit channel hardening, but a certain loss occurs for channels with little or no 

hardening. 

2.7 Precoding 

Definition: Precoding is the transmitter signal processing needed to affect the received 

signal's maximization to specific receivers and antennas while reducing the interference 

to all other receivers and receiving antennas. 
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 Precoding is a conception of beam-forming where the multi-antenna systems 

support the multi-stream transmission. Precoding performs an imperious technique in 

massive MIMO systems where it plays a crucial role to reduce the effects of 

interference and path-loss, and increases the throughput. In massive MIMO systems, 

the BS can estimate the CSI thanks to the UL pilot signals which are sent from the 

received terminals. The received CSI at the BS is imperfect and uncontrollable as a 

result of several environmental obstacles on the wireless channel. Though the BS does 

not have a perfect CSI, nevertheless the DL performance of the BS broadly depends on 

the estimated CSI. The massive MIMO’s BS exploits the precoding techniques and the 

estimated CSI to mitigate the interference and increase spectral efficiency.  

The precoding techniques give a tremendous benefits to massive MIMO 

systems. Unfortunately, these benefits are coming with a high computational 

complexity which is directly proportional to the number of antennas. Therefore, a low 

complexity precoder is imperative to exploit in massive MIMO systems. 

 

2.7.1 Linear Precoding 

The below Fig 2.2 depicts the generalized block diagrams of communication systems 

with precoding and decoding techniques. The P is a feedforward matrix of linear 

precoding, the B is a feedback matrix of linear precoding, the K is a feedforward matrix 

of linear decoding, and the C is a feedback matrix of non-linear precoding. These 

matrices specify the required precoding technique from a linear/non-linear or hybrid 

technique. For instance, when B = 0 the generalized precoding technique acts as the 

linear precoding technique. The Modulo arithmetic is used to adjust the average power.  
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Figure 2.2 Generalized block diagram of communication systems with precoding and 

decoding techniques. 

 

Thus the transmitted signal for the N users in the DL transmission, where M >N, 

can be expressed as: 

                    (1) 

where P is a M × N linear precoding matrix, a is a N × 1 transmitted vector before 

precoding process, and √𝜌 is the transmitted average power. The precoding matrix P 

is related to H. In the TDD mode, the DL channel is the transpose of the H, and the 

N×1 vector at N-received terminals becomes  

         (2) 

In general, the P matrix of basic precoding techniques contains a matrix inversion 

operation which leads to high computational complexity, especially, if N is not greater  

enough than M . According to the manner of dealing with the matrix inversion process, 

the linear precoding technique can be classified into basic linear precoding, linear 

precoder based on the matrix inversion approximation, linear precoder based on fixed-

point iterations, and linear precoder based on matrix-decomposition.  
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2.7.2 Linear Precoding Algorithms 

The basic linear precoder mainly depends on multiplying the transmitted signal 

a with the precoding matrix P. The basic linear precoder has O(N3 ) computational 

complexity which is comparable to the exact matrix inversion complexity. 

 

A) Maximum Ratio (MR) Algorithm 

The MR aims to maximize the gain of signal into a specific receive terminal. It 

is the counterpart of the matched filtering (MF) and conjugate beamforming (CB). The 

MR precoding matrix formula is  

                                                   (1) 

where β is a scaling power factor and Hj*s the complex conjugate of H matrix. Thus, 

the received signal becomes 

 (2) 

The MR algorithm achieves the sum capacity of a massive MIMO system when the 

number of M is much larger than N, and M grows to infinity (M >>N and M → ∞).  

In general, the MR algorithm performance is close to optimal when the inter-user 

interference (IUI) is trivial compared to the noise (noise-limited systems). In the MR 

algorithm, when the values of M and N are comparable, the system experiences a strong 

IUI. Thus, the throughput of each user becomes low which degenerates the massive 

MIMO concept. Another amazing feature of the MR algorithm is that each antenna in 

the BS can perform its signal processing locally. That allows a decentralized 

construction for the large number of antennas and leads to a great flexible system. 

 

B) Zero-Forcing (ZF) Algorithm 

The ZF algorithm is a common algorithm of fundamental precoding techniques. 

It is the counterpart of the channel inversion. A ZF algorithm mitigates the interference 

caused of other users by pointing the signal beam into the intended user whereas nulling 

the other directions where other users are located. This nulling is performed by 

multiplying the user data with the following ZF precoding matrix.  
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                                                 (1) 

where G = HTH* is a Gram matrix whose diagonal components indicate power 

imbalance throw the channel, and non-diagonal components indicate the mutual 

correlations among the channels. While the number of transmit antennas grows to 

infinity in massive MIMO systems, G goes to become an identity matrix and the matrix 

inversion computations can be simplified. The received signal of the ZF algorithm can 

be expressed as  

(2) 

The ZF algorithm performance is close to optimal when the noise is trivial 

compared to the IUI. The ZF algorithm is considered to be practical when neglecting 

the AWGN in the massive MIMO channel model, while the massive MIMO precoding 

algorithm becomes much simpler to implement. Unfortunately, the noise is not 

negligible in a real situation and utilization of the ZF algorithm in massive MIMO 

systems may not give an optimal solution. The ZF algorithm may achieve accurate 

results at high signal-to-noise ratio (SNR). 

 

C) Minimum Mean Square Error (MMSE) Algorithm 

The MMSE algorithm exploits the benefits of the MR and ZF algorithms and 

achieves a balance between them. Therefore, it has an acceptable performance in 

moderate noise and interference systems. The MMSE algorithm is the counterpart of 

the regularized ZF (RZF), signal-to-leakage and-interference ratio (SLNR), eigenvalue-

based beamforming, and transmit Wiener filtering. The MMSE algorithm is created by 

using the mean square error method in the signal to minimize the error filtering between 

the transmitted symbols from the BS and the received terminal. 

 

The MMSE precoding matrix formula is 

             (1) 
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where λ is a positive regularizing factor which depends on the system dimensions, the 

noise variance, and uncertainty of channel at the transmitter. The matrix V is a N × N  

deterministic Hermitian non-negative definite matrix. When V = 0, a balance occurs 

between increasing the channel gain toward intended received terminals (at a large 

value of λ ) and eliminating the IUI (at a small value of λ ). The MMSE algorithm 

performs as the ZF algorithm at λ → 0, and as the MF algorithm at λ → ∞. The received 

signal of the MMSE algorithm is  

 

However, the computation of the ZF and MMSE precoding matrix comprises the 

inversion of a very large-dimension matrix, particularly for large values of M and N  

Therefore, it is quite important to offer a method to diminish the complexity of the basic 

precoding algorithms. 

 

2.7.3 Precoding design 

           Unlike in the UL, finding the optimal precoders is a challenging task since the 

DL SE in (5) depends on the precoding vectors {wli} of all UEs in the entire network. 

Motivated by the UL-DL duality , a common heuristic approach is to select wjk as 

                                                           wjk = 
𝑣𝑗𝑘

||𝑣𝑗𝑘||
                                                           (1) 

where vjk denotes the combining vector used to detect the UL signal transmitted 

by UE k in cell j. In this work, we assume that vjk is designed according to MR 

combining  

                                                           vjk
MR =  ĥjk

j                                                                                     (2) 
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 and M-MMSE combining 

                     

 where                                                     (3) 

                                                    (4) 

This choice is motivated by the fact that M-MMSE is optimal but has high 

computational complexity. On the other hand, MR is suboptimal (not only for finite 

values of M but also as M → ∞ but has the lowest complexity among the receive 

combining schemes.       
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CHAPTER 3: POWER ALLOCATION IN MASSIVE MIMO 

 

3.1 Introduction 

 Effective and computationally tractable power control is one of the unique new 

features of Massive MIMO. Among other things, power control handles near-far effects, 

and it enables uniformly good service throughout the cell. Massive MIMO power 

control occurs on a long time scale because effective SINRs depend only on large-scale 

fading coefficients. We develop power control schemes to meet given performance 

targets both in single-cell and multi-cell systems and both for the uplink and the 

downlink, with max-min (egalitarian) SINR fairness as a particularly important special 

case. 

Power allocation in massive MIMO is a pivotal technique to achieve uniform 

quality of service for every user throughout the network. We highlight that power 

allocation is performed to utilize the available power in an efficient manner. During the 

uplink transmission phase, power control methods for power allocation can be applied 

to mitigate the near far effects. Furthermore, during the downlink transmission, power 

control can be applied to ensure that every user in the network enjoys a uniform quality 

of service. Power control for the purpose of power allocation in massive MIMO is a 

well-investigated topic. 

 

3.1.1 Preliminaries 

  An inspection of effective SINRs in discloses qualitatively identical dependence 

on the power control coefficients for the four cases of uplink/downlink and zero-

forcing/maximum-ratio. This permits a unified treatment of power control. 

 

In the single-cell case, we observe that the effective SINR for terminal k can 

always be written in the following general form: 

 

                                       (1) 
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where {ak } and {bk
k’ } are strictly positive constants, given by Table 3.1. In Table 3.1, 

M, K, ρul, ρdl, βk , γk and ηk have the meanings as defined. 

 

Table 3.1. Explicit formulas for the coefficients {ak } and { bk
k’ } for a single-cell 

system 

 

 

Table 3.2. Explicit formulas for the coefficients {alk }, {blk
l’k’ }, {clk

l’k’ } and {dlk
l’ }  

for a multi-cell system. 
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Table 3.3. Summary of constraints on the power control coefficients 

 

Similarly, for the multi-cell case, from Table 4.1 the effective SINR for the kth terminal 

in the lth cell can be written as 

       (2) 

where the non-negative coefficients {alk }, { blk
l’k’ }, { clk

l’k’ }, and { dlk
l’ } are given in 

Table 3.2. In Table 3.2, βlk
l’k’

; γlk
l’k’ and ηlk are defined.The single-cell scenario is, of 

course, a special case of the multi-cell scenario, obtained by setting { clk
l’k’ } and {clk

l’k’} 

equal to zero and omitting the cell index l. 

 

Table 3.3 summarizes the constraints on the power control coefficients for the single-

cell and multi-cell cases. Henceforth, we denote by L the total number of cells 

 

3.2 Power Control with Given SINR Targets 

The problem of designing a power control policy that offers guaranteed quality-

of-service can be cast as a linear feasibility problem. 
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3.2.1 Single-Cell System 

We start with a single-cell system. Consider a constraint of the form 

                                             SINRk   ≥   𝑆𝐼𝑁𝑅𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅           k = 1,……K,            (3) 

Where  𝑆𝐼𝑁𝑅𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅  is a given target 𝑆𝐼𝑁𝑅 for the kth terminal. An SINR target is directly 

translatable to a spectral efficiency target, by using the formulas for net spectral 

efficiency. In practice, such a target could reflect a quality-of-service requirement for a 

particular terminal. The set of constraints is equivalent to the following set of 

inequalities: 

                         (4) 

which are linear in {ηk }. This means that the problem of designing a power control 

policy under which the kth terminal achieves an SINR of at least 𝑆𝐼𝑁𝑅𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅ can be written 

as 

find {ηk } 

subject to (i) SINRk ≥  𝑆𝐼𝑁𝑅𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅    k = 1,..., K,                       (5) 

(ii) the constraints in Table 3.3 

Problem (5) is a linear programming feasibility problem, which is easily solved using 

standard software toolboxes. The set of all SINR constraints in (3) can be satisfied for 

some permissible {ηk } if and only if the problem (5) has a solution. 

3.2.2 Multi-Cell System 

For the multi-cell case, we again impose a target SINR as a set of constraints, 

 

                           SINRlk  ≥  𝑆𝐼𝑁𝑅𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅,             k = 1,……K,      l = 1,……L                  (6) 
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where SINRlk is a target SINR for the kth terminal in the lth cell. Each inequality in 

(6) is equivalent to the following inequality:  

              (7) 

which is linear in {ηlk }. Hence, a power control policy design problem of the form  

find {ηlk } 

subject to (i) SINRlk ≥ 𝑆𝐼𝑁𝑅𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅    k = 1,..., K,     l = 1,..., L  

(ii) the constraints in Table 3.3                                       (8)  

is a linear programming feasibility problem, as in the single-cell case. 

 

3.3 Power allocation  

The DL SE of UE k in cell j can be rewritten as  

                   (9) 

where 

                                                                              (10) 

and 

              (11) 

 

are the average channel gains and average interference gains, respectively. The average 

is computed with respect to the small-scale fading realizations so that the DL SE is only 

a function of the large scale fading statistics and the choice of precoding. This is a 
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unique feature of Massive MIMO that largely simplifies the power allocation problem 

compared to single-antenna systems. 

 Among the different power allocation policies, two prominent examples are the 

max-min fairness and max product SINR strategies, which can be mathematically 

formalized as follows:  

 

                  (12) 

and the max product SINR, given by 

 

         (13) 

where Pmax
dl  denotes the maximum DL transmit power. Irrespective of the strategy, the 

following Monte Carlo methodology is needed to compute the optimal powers. 

1) Macroscopic propagation effects  

a) Randomly drop UEs in positions xli
j 

b) Compute large-scale fading coefficients βlk
j 

c) Compute channel correlation matrices Rlk
j 

2) Microscopic propagation effects  

a) Generate random estimated channel vectors hlk
j by using MMSE estimator  

3) SE computation 

a) Compute precoding vectors wjk with MR or M-MMSE precoding  

b) Average over estimated channels to obtain {ajk} and {blijk}.  

4) Allocate the power by solving (12) or (13). 
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The solution to (12) can be obtained through a bisection approach in which a sequence 

of convex problems is solved, while (13) can be solved by geometric programming. 

Thus, both (12) and (13) require a polynomial or quasi-polynomial complexity to be 

solved. However, even a polynomial complexity can be too much when the solution 

must be obtained in real-time; that is, fast enough to be deployed in the system before 

the UEs positions change and the power allocation problem needs to be solved again.  
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CHAPTER 4: DIFFERENT TYPES OF POWER ALLOCATION 

 

4.1. Introduction 

The proposed power allocation algorithms are ineffective that the proposed 

power allocation algorithms are generally compared with basic methods such as Equal 

power allocation (EPA), max-min fairness power allocation, max product SINR power 

allocation. In this section, a comparison of these three basic power allocation algorithms 

with each other under the CDF state performance metric of SE per user (bit/s/Hz) is 

performed by considering downlink transmission for MRC, ZF and M-MMSE 

precoding techniques. 

 

The different types of Power allocation techniques used are 

1) Equal Power allocation 

2) Maximum-Minimum fairness Power allocation 

3) Maximum product SINR Power allocation 

 

4.2 Equal Power allocation 

 One of the simplest forms of power control is equal power allocation. This 

power control can be applied in both the uplink and the downlink transmissions. In the 

uplink, all the users transmit their signals with maximum available power. In the 

downlink, the available power is uniformly shared among all the users in the network. 

We note that implementing this power control is the same as having no power control 

in the network. This is because the eight Introduction power control coefficients do not 

change in response to the changes in the channel conditions in the network. As such, 

this rudimentary power control method does not provide a large performance boost as 

compared to other sophisticated power control methods. Nevertheless, equal power 

control is easy to implement. 

 

 Equal power allocation, in other words, Uniform power allocation is used in 

MIMO systems where CSI is known only at the receiver. One of the most important 

factors in choosing this method is that it provides low complexity. Therefore, it was 
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mostly preferred especially in the early days of MIMO systems. However, considering 

the situations where there is a limited power limit, it is important to develop different 

strategies. Because the same power is allocated to the user with a bad channel due to 

EPA, there is no effective use of power. The upper limit of the maximum capacity ratio 

that the communication systems can reach was determined by the study by Shannon. 

Therefore, the highest point where the capacities of MIMO systems can be increased is 

also obvious. 

 C = H(Y) – H(N)                                       (1) 

 

where 𝑯(𝒀) and 𝑯(𝑵) in this expression are the entropy of the received signal and the 

noise signal, respectively. 𝐑𝐱 = Ε {𝐱𝐱H}, 𝐑𝐧 = Ε {𝐧𝐧H} and 𝐑𝐲 = Ε {𝐲𝐲H} represent 

the covariance matrix of transmitted signal, noise signal and received signal, 

respectively. In this case, 𝜌 represents SNR. 

 

Ry = E [yH y] =  𝜌HH RX H + INR                                 (2) 

 

In line with this information, the capacity expression can be rewritten as 

 

C = log2 det ( 𝜌HH RX H + INR )                           (3) 

 

Also, since 𝐑𝐱 is the covariance matrix of the transmitted signal, this expression can 

be represented as follows 

 

   𝑅𝑥 =
𝑃

𝑁𝑇
𝐼𝑁𝑇

                                              (4) 

 

 

As a result of these equations, the capacity expression takes the form expressed in 

 

C = log2 det ( 𝐼𝑁𝑅
+ 

𝑃

𝑁𝑇𝜎2 HHH )                   (5) 

: 
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4.3 Maximum-Minimum fairness Power allocation 

 Power control is necessary to provide a uniform quality of service to all the 

users and promote fairness in the network. The max-min fairness Power allocation 

achieves fairness in the network by maximizing the minimum achievable SINR for all 

the users in the network. The power control problem in the multi-cell network is first 

formulated as a max-min optimization problem, which is then solved to find the optimal 

power control coefficients. When the max-min power control is applied, the SINRs for 

all the users in the network are equal. This max-min power control method performs 

well when the number of cells in the network is small. However, as the number of cells 

in the network increases, the power control method become less scalable. Notably, the 

performance of the entire network is limited by the cell experiencing the worst channel 

conditions. Furthermore, the achievable SINRs may approach zero when the number of 

cells in the network is very large. 

 

An important design philosophy for power control policies is max-min 

(egalitarian) fairness, which seeks to maximize the worst SINR over all terminals. A 

simple proof by contradiction establishes that the max-min solution to the optimization 

problem provides equal SINRs for all terminals. Assume the contrary; then there is a 

terminal whose SINR is greater than the max-min SINR. We can reduce the power 

control coefficient for that terminal somewhat, which can only affect the other terminals 

by reducing their denominators, thereby increasing their SINRs. Consequently, the 

original assumption of a max-min solution is false. Max-min fairness power control 

therefore amounts to setting all SINR targets equal to a common value SINR, and then 

finding the largest possible value of SINR that ensures that all constraints  

in Table 3.3 are satisfied. 

  

For a single-cell system, max-min fairness means that the SINR targets for all 

terminals in the cell are equal. In a multi-cell system, max-min fairness may be imposed 

network-wide, or independently within each cell. 
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 A key vision of Massive MIMO is to provide uniformly good quality of service 

for everyone in the network. We will investigate how to optimize the pilots and powers 

towards this goal. We consider the pilot and data powers as optimization variables. The 

max-min fairness optimization problem is first formulated for the proposed pilot design 

as 

    (1) 

Where Pd
max.l,k is the maximum power that users can provide for each data symbol. Note 

that this optimization problem jointly generates the pilot signals and performs power 

control on the pilot and data transmission. The epigraph-form representation of (1) is 

    (2) 

     (3) 

                    (4) 

                         (5) 

From the expression of the SINR constraints in (3), we realize that the proposed 

optimization problem is a signomial program. Therefore, the max-min fairness 

optimization problem is NP-hard in general and seeking the optimal solution has very 

high complexity in any non-trivial setup. However, the power constraints (4) and (5) 

ensure a compact feasible domain and make the SINRs continuous functions of the 

optimization variables. 

 

The optimization problem (1) requires coordination among the cells to be solved, but 

the main target in this paper is to investigate how much the max-min fairness SE can 

be improved in multi-cell Massive MIMO by joint pilot design and DL power control. 

One potential way to deal with practical limitations such as backhaul signalling, delays, 
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and scalability is to implement the optimization problem in a distributed manner using 

dual/primal decomposition. 

 

The max-min fairness power allocation technique aims to maximize the worst 

SINR among all users This method is used for various performance improvements in 

Massive MIMO systems. The basic mathematical operation of the max-min fairness 

power allocation method can be 

                  (6) 

 

                                                                                                     (7) 

 

       (8) 

As a basis, the max-min fairness power allocation algorithm can be applied to the 

desired performance criterion. The disadvantage of the max-min fairness power 

allocation algorithm is that although the algorithm focuses on improving the 

performance of the worst user, it creates a loss in overall network efficiency of the 

system. 

 

4.4 Maximum product SINR Power allocation 

 Max product SINR power allocation algorithm is considered in Massive MIMO 

systems to increase SE. Because, SE depends on a logarithmic expression of the SINR. 

The simplest of the power allocation methods is EPA. In addition, there is a max 

product SINR power allocation method that provides a balance between total SE and 

fairness. The aim is to maximize the SINR products of users across system. 
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To evaluate the performance of the power allocation, we illustrate the cumulative 

distribution function (CDF) of the DL SE per UE, where the randomness is due to the 

UE locations and shadow fading realizations. We consider ZF, MR, and M-MMSE.  

 

The mathematical expression of the max product SINR power allocation method can  

be written as follows,   

   

             (1) 

                                     (2) 

 

  As expected, the CDF curve with M-MMSE is to the left of the MR curve. This 

basically means that better performance with M-MMSE than with MR. This result 

might seem counterintuitive, since the M-MMSE is algorithmically and 

computationally more complex than MR and thus its optimal power allocation should 

in principle be more difficult to learn. A possible explanation for this is that with MR 

precoding the power is allocated only on the basis of the desired signal gain. On the 

other hand, with M-MMSE this is accomplished by also taking into account the power 

of interfering signals. Since the NN receives as input the positions of all UEs in the 

network, it is able to make the most of this information only when M-MMSE is 

employed.  

 

To conclude, with the max-prod strategy the proposed deep learning based power 

allocation has significant computational complexity advantage compared to traditional 

approaches, while maintaining near-optimal performance with both MR and M-MMSE 

precoding.                                                                
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4.5 Deep learning based power allocation 

A central goal of this work is to demonstrate that geographical location 

information of UEs is already sufficient as a proxy for computing the optimal powers 

at any given cell. This is in contrast to the traditional optimization approaches for 

solving (12) and (13) that require knowledge of {ajk} and {blijk} in (10) and (11). We 

advocate using UEs’ positions because they already capture the main feature of 

propagation channels and interference in the network. Therefore, for any given cell j 

the problem is to learn the unknown map between the solution ρj
* = [ρ*

j1 , . . . , ρ*
jK] ∈ 

RK to (12) or (13) and the 2KL geographical UE positions x = {xj
li; ∀j, l, i} ∈ R2KL. This 

is achieved by leveraging the known property of NNs that are universal function 

approximators. Particularly, we employ a feed forward neural network with fully-

connected layers, and consisting of a 2KL dimensional input layer, N hidden layers, and 

a K + 1-dimensional output layer yielding an estimate ˆρj = [ˆρj1, . . . , ρˆjK] of the optimal 

power allocation vector ρ*
j . Observe that the output layer has size K + 1 instead of K, 

since we also make the NN learn P Kk=1 ρ*
jk so as to satisfy the power constraint and 

increase the estimation accuracy.  

 

The problem reduces to train the weights W and bias terms b of the NN so that 

the input-output map of the NN emulates the map of traditional approaches. This 

requires a training set containing NT multiple samples {ρ*j (n), x(n); n = 1, . . . , NT }, 

where ρ?j (n) corresponds to the optimal power allocation for the training input x(n). 

Denoting by ˆρj (n) the corresponding output of the NN, the learning process consists  

of minimizing the following loss: 

 

 

with (·, ·) any suitable distance measure. Once the parameters W and b are configured, 

the NN can estimate the optimal power allocation policy also for input vectors that are 

not part of the training set. Therefore, every time the UEs change their positions in the 
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network, the power allocation can be updated by simply feeding the new positions to 

the NN, without having to actually solve (12) or (13). 

 

Parameter Value 

Number of base station antennas, M 100 

Number of users in each cell, K 5 

Number of base stations, L 4 

Pilot reused factor, f 1 

Total transmit power per user, 𝜌 (mW) 100 

Length of coherence block, 𝜏c 200 

 

Table 4.1 Used parameters in massive MIMO network 

 

4.5.1 Online implementation and Complexity 

The complexity of the proposed approach mainly lies in the generation of the 

training set. Assume that each layer is composed of Ni neurons. Computing the output 

of the NN requires only real multiplications and the evaluation of activation functions. 

Also, the training algorithm is conveniently performed by standard (stochastic) gradient 

descent algorithms coupled with the back-propagation algorithm. Instead, generating 

the training set requires to actually solve (12) or (13) for many different realizations of 

x, by means of traditional optimization theory methods. However, this is not an issue 

for at least two reasons: 

 

 • The training set can be generated off-line. Thus, a much higher complexity 

    can be afforded and real-time constraints do not apply.  

             • The training set can be updated at a much longer time-scale than the rate at 

    which the UEs positions in the network vary. Thus, the training set can be 

    updated at a much longer time-scale than that at which the power control            



50 

    problem should be solved if traditional resource allocation approaches were 

    used. 

From the above considerations, it follows that the proposed approach grants a huge 

complexity reduction, which allows one to update the power allocation based on the 

UEs positions in real time.  

 

4.6 Performance evaluation 

We consider the Massive MIMO network reported in Table 4.1 with L = 4 cells, 

with each cell covering a square area of 250 × 250 m. A wrap around topology is used. 

We assume that K = 5 UEs are randomly and uniformly distributed in each cell, at 

distances larger than 35 m from the BS. Results are averaged over 100 UE distributions. 

We consider communication over a 20 MHz bandwidth with a total receiver noise 

power σ2 of −94 dBm. We assume that τp = K (i.e., pilot reuse factor of 1) and that the 

UL transmit power ρ per UE is 20 dBm. 

 

4.6.1 Maximum-product SINR 

 To evaluate the performance of the NN-based power allocation, we illustrate 

the cumulative distribution function (CDF) of the DL SE per UE, where the randomness 

is due to the UE locations and shadow fading realizations. We consider MR, and M-

MMSE in which the NN used with both precoding schemes. The NN matches very well 

the optimal solution with M-MMSE. With MR precoding, a small mismatch between 

the two curves is observed. This basically means that the NN achieves, statistically 

speaking, better performance with M-MMSE than with MR. This result might seem 

counterintuitive, since the M-MMSE is algorithmically and computationally more 

complex than MR and thus its optimal power allocation should in principle be more 

difficult to learn. A possible explanation for this is that with MR precoding the power 

is allocated only on the basis of the desired signal gain. On the other hand, with M-

MMSE this is accomplished by also taking into account the power of interfering signals. 

Since the NN receives as input the positions of all UEs in the network, it is able to make 

the most of this information only when M-MMSE is employed.   
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4.6.2 Maximum-Minimum fairness 

 The NNs used for the max-prod strategy, revealed to be inadequate with the 

max-min approach. This is probably due to the fact that the power distribution changes 

considerably between the two strategies. To overcome this issue, we used a different 

NN, which consists of two recurrent Long Short Term Memory (LSTM) layers and two 

dense layers. The NN matches almost exactly the theoretical curves with both MR and 

M-MMSE. It lacks scalability when the network size increases. 
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CHAPTER 5: SIMULATION RESULTS 
 

A comparison of the power allocation algorithms specified for SE in the downlink 

transmission mentioned in the previous chapter is performed. A multi-cell Massive 

MIMO system is considered and the parameters are given in Table 4.1. In this part 

where Monte Carlo simulation results are given, MR, ZF and MMSE schemes are taken 

into account for a multi-cell Massive MIMO system. In this system, where the number 

of cells is considered to be 4, each base station is located in the system center. The 

number of users in each cell is considered to randomly position as 10. The base station 

has 100 antennas. 

        The CDF of SE per user (bit/s/Hz) is considered as the performance metric used 

in the simulations. The CDF shows how SE changes depending on random user 

locations. Some users are in "good" locations and get high spectrum and other users are 

in "bad" locations and get lower spectrum. Different power allocation algorithms try to 

construct CDF curves in different ways. For example, the max-min equitable power 

allocation solution tries to make the curves nearly vertical to limit SE differences 

between users. Because the goal is to try to make the SE similar for users in good and 

bad locations. 

 

 
 

Figure 5.1. CDF of DL SE with MR 
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                                Algorithm 

                     

CDF   

 

Point 

 0.9 0.1 

Max-Min  Fairness  power Allocation 1.72 

bit/s/Hz 

1.01 

bits/Hz 

Equal Power Allocation 4.15 

bit/s/Hz 

1.07 

bit/s/Hz 

Max  Product SINR Power Allocation 4.46 

bit/s/Hz 

1.12 

bit/s/Hz 

                                        
Table 5.1. SE Values for MR 

 

 

 
 

Figure 5.2. CDF of DL SE with ZF 
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                                Algorithm 

                     

CDF   

 

Point 

 0.9 0.1 

Max-Min  Fairness  power Allocation 1.85 

bit/s/Hz 

1.22 

bit/s/Hz 

Equal Power Allocation 5.27 

bit/s/Hz 

1.13 

bit/s/Hz 

Max  Product SINR Power Allocation 5.34 

bit/s/Hz 

1.43 

bit/s/Hz 

 
Table 5.2. SE Values for ZF 

 
 
 

 
 

Figure 5.3. CDF of DL SE with MMSE 
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                                Algorithm 

                     

CDF   

 

Point 

 0.9 0.1 

Max-Min  Fairness  power Allocation 1.94 

bit/s/Hz 

1.36 

bit/s/Hz 

Equal Power Allocation 5.35 

bit/s/Hz 

1.26 

bit/s/Hz 

Max  Product SINR Power Allocation 5.46 

bit/s/Hz 

1.55 

bit/s/Hz 

 
Table 5.3. SE Values for MMSE 

 
Figure 5.1, Figure 5.2 and Figure 5.3 show the CDF of SE in a simulation with random 

distributions of user positions in Massive MIMO system, where the base station has 

100 antennas, each cell has 5 users, and the overall number of cells is 4, according to 

the MR, ZF, and MMSE diagrams. 

  

 When the figures are examined, it can be seen that the best results are provided 

for the MMSE in total. It is also stated that this scheme is superior to MR and ZF. When 

comparing the remaining two schemes, MR and ZF, it is understood that ZF is more 

effective than MR. When the figures are examined, the results of the SE CDF at 0.9 and 

0.1 for each scheme according to the power allocation algorithms are shown in Table 

5.1, Table 5.2 and Table 5.3 respectively. The results for the case where all users are 

included in the figures. 

 

 As can be seen from the figures and tables, in the case of MRC a small 

percentage of users are better off with max-min fair power allocation. In the other two 

schemes, although the efficiency of a small percentage of users is better with EPA, 

max-min fair power allocation is superior to maximum power allocation of SINR 

products. 
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 When interpreted in terms of power allocation algorithms, it is seen that the 

max-min fairness power allocation algorithm tends to users with less SE due to its 

working principle. Thus, it is understood that these users are trying to increase SE. This 

applies to all three schemes. When examined in terms of all users, it is understood that 

the max product SINR power allocation method gives the best results in all schemes. 

The EPA algorithm, on the other hand, gives a result between these two in any case. In 

general, it is observed that the state of the CDF curves for all three power allocation 

algorithms is affected by the choice of signal detection schemes to consider for the 

downlink. 

 

 When focusing on the graph curves, it is seen that for any scheme other than 

MRC, if approximately 10 percent of the users have better channels, the SE is higher 

with EPA. In the case of MRC, although max-min fair power allocation is ahead in this 

regard, it is understood that the ratios are close to each other. However, as it can be 

noticed from the tables, in case a small portion of users have good channels, max-min 

fair power allocation is at the forefront. If the random location of the users is taken into 

account and a certain SE value is required for the user at this location, the maximum 

power allocation method of SINR multiplications is a method that should be preferred. 

 

 Briefly, different results in SE of users for downlink are provided by power 

allocation. When evaluated in general, it has been observed that the maximum of SINR 

product power allocation algorithm mostly provides high SE. Which power allocation 

is effective for specific cases can be obtained from the results. In addition, the effect of 

the signal detection scheme to be used on the results is shown. Thus, the most suitable 

scheme can be selected. 
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Figure 5.4. CDF of the DL SE per UE 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4. SE Values for MR and M-MMSE 

 

To evaluate the performance of the NN-based power allocation, we illustrate the 

cumulative distribution function (CDF) of the DL SE per UE, where the randomness is 

due to the UE locations and shadow fading realizations. We consider MR, and M-

MMSE. The results of Fig.5.4 show that the NN matches very well the optimal solution 

 

Deep Learning based  

Power Allocation 

 

CDF 

 

 

Point 

 0.9 0.1 

Max-Min  Fairness for MR 1.75 

bit/s/Hz 

0.92 

bit/s/Hz 

Max-Min Fairness with NN for 

MR 

1.81 

bit/s/Hz 

0.95 

bit/s/Hz 

Max-Min  Fairness for M-MMSE 2.02 

bit/s/Hz 

1.21 

bit/s/Hz 

Max-Min Fairness with NN for 

M-MMSE 

2.04 

bit/s/Hz 

1.24 

bit/s/Hz 
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with M-MMSE. The average MSE is 0.007. With MR precoding, a small mismatch 

between the two curves is observed. This basically means that the NN achieves, 

statistically speaking, better performance with M-MMSE than with MR. This result 

might seem counterintuitive, since the M-MMSE is algorithmically and 

computationally more complex than MR and thus its optimal power allocation should 

in principle be more difficult to learn. A possible explanation for this is that with MR 

precoding the power is allocated only on the basis of the desired signal gain. On the 

other hand, with M-MMSE this is accomplished by also taking into account the power 

of interfering signals. Since the NN receives as input the positions of all UEs in the 

network, it is able to make the most of this information only when M-MMSE is 

employed. 

  

 To conclude, with the max-prod strategy the proposed deep learning based 

power allocation has significant computational complexity advantage compared to 

traditional approaches, while maintaining near-optimal performance with both MR and 

M-MMSE precoding. 

 

 

 

Figure 5.5. CDF of the DL SE per UE 
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Deep Learning based  

Power Allocation 

 

CDF 

 

 

Point 

 0.9 0.1 

Max  Product SINR for MR 4.21 

bit/s/Hz 

 

1.11 

bit/s/Hz 

Max  Product SINR with NN for 

MR 

4.25 

bit/s/Hz 

1.13 

bit/s/Hz 

Max  Product SINR for M-

MMSE 

5.52 

bit/s/Hz 

1.22 

bit/s/Hz 

Max  Product SINR with NN for 

M-MMSE 

5.53 

bit/s/Hz 

1.24 

bit/s/Hz 

 
Table 5.5. SE Values for MR and M-MMSE 

 
The NNs used for the max-prod strategy, revealed to be inadequate with the max-min 

approach. This is probably due to the fact that the power distribution changes 

considerably between the two strategies. To overcome this issue, we used a different 

NN, which consists of two recurrent Long Short Term Memory (LSTM)1 layers and 

two dense layers. The results of Fig.5.5 show that the NN matches almost exactly the 

theoretical curves with both MR and M-MMSE. 
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CHAPTER 6: CONCLUSION 
 

In this study, power allocation strategies for Massive MIMO systems are detailed. With 

the advancement of next-generation wireless communication technologies, it is critical 

to enhance spectrum and EE, in particular. For this reason, studies of power allocation 

algorithms, especially on spectrum and EE, have been taken into account. It is to 

emphasize the conditions under which power allocation algorithms proposed in these 

studies are performed. Massive MIMO scenarios used by detailing these conditions are 

also revealed. In addition, performance metrics in these studies, which focus on 

spectrum and EE, are specified. The techniques used in the creation of the algorithm 

are detailed. 

After a general view of the power allocation algorithms, the power allocation 

strategies that are essentially covered in the literature were compared. These algorithms 

are EPA, max-min fairness power allocation and SINR product maximum power 

allocation algorithm. The examination of the SE for the multi-cell Massive MIMO 

system was carried out in terms of power allocation algorithms. In addition, MRC, ZF 

and MMSE schemes were taken into account to observe the results according to the 

signal detection schemes. In summary, the power allocation algorithms in Massive 

MIMO systems were examined especially for SE and EE.  

 

In addition, we proposed a deep learning framework to allocate the power in the DL of 

a Massive MIMO network with MR and M-MMSE precoding. Two power allocation 

strategies were considered, namely, max-min and max-prod. We showed that with both 

strategies a properly trained feed-forward NN is able to learn how to allocate powers to 

the UEs in each cell. This is achieved by using only the knowledge of the positions of 

UEs in the network, thereby substantially reducing the complexity and processing time 

of the optimization process. Numerical results showed that the deep learning framework 

performs better with M-MMSE rather than with MR. This is likely due to the fact the 

M-MMSE allows the NN to exploit the most its available information. Moreover, the 

max-min policy revealed to be harder to learn. 
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